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ABSTRACT

The problem of supersonic and hypersonic flow past blunt bodies at

small angles of attack is considered. Two-dimensional asymmetric as

well as three-dimensional flow is analyzed.

The method of analysis is an inverse one, that is, the shock-wave

shape and free stream conditions are known, and the corrcspondinL& body

shape and flow field are to be determined. A semi-analytical, semi-

numerical solution to the full inviscid equations of motion is obtained

by expanding the stream function and density in double McLaurin series

in powers of distance from the shock-wave axis of symmetry and powers of

the shock-wave angle of attack. These expansions bring about a separa-

tion of variables that reduces the problem to numerical integration of

ordinary dlfferential equations for the power-series coefficients. The

integration can be accomplished only by',truncating the series. This

truncation may be performed after keeping any desired number of terms

in the series about the shock symmetry-axis. Only first-order terms

in shock-wave angle of attack are retained.

Solutions at zero angle of attack are obtained as a special case

of the general problem. Results at zero angle are obtained for shock

waves that are portions of circles, parabolas, spheres, and paraboloids

of revolution at a free stream Mach number, M , of infinity and ratio

of specific heats, y , of 1.4. The first three truncations are carried

out for the parabolic and spherical shock, whereas the first four

truncations are calculated for the circular and paraboloidal shock. In

all cases the stagnation-point density is obtained to five-significant-

figure accuracy in two truncations. Standoff distance is obtained to

four-place accuracy in three truncations. Convergence away from the

axis of symmetry is not so rapid. Body shapes out to the sonic point

converge in three truncations for the two-dimensional cases. However,

axisymmetric body shapes and both two-dimensional and axisymmetric sonic

line positions and surface pressure distributions out to the sonic point

are not converged in four truncations, but are very close to being so.
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Comparison with results obtained using Van Dyle's and Garabedian's

numerical solutions indicates that the method under consideration is

more accurate than the Van Dyke method.

The first three truncations are calculated for parabolic and parab-

oloidal shock waves at small angle of attack and infinite free stream

Mach number. The specific-heat ratio, y , takes on the values 1,4,

1.2, 1.1, and 1.05. For all cases, the streamline that wets the body

passes through the shock wave slightly above the point where the shock

wave is normal., and consequently does not possess maximum entropy.

Although these results provide a counter example to the conjecture that

any isolated convex body in a supersonic stream is wetted by the stream-

line of maximum entropy, the stagnation and maximum-entropy streamlines

are very close to each other, thus suggesting that the conjecture may

be a good practical approximation. Indications are that, in the

Newtonian lirmit ( M y , 1 ), the onjecture is true for the

shock shapes considered.

A symmetrical shock wave at angle of attack is produced by a body

that is asyixetric to the shock axis of ymmetry. However, a conic

section may be fitted to the converged body shape out to the sonic point.

This is done for the third-truncation body that produces a parabolic

0shock at angle of attack of 10 . The body is closely approximated by

a prolate ellipse at angle of attack of 14.20. Thus, for the two-

dimensional case, the shock wave is seen to rotate more slowly than

the body as angle of attack is imposed. The same result is true for

the third-truncation body in the three-dimensional case.
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I. INTRODUCTION

For more than a decade, theoreticians interested in high-speed

gasdynamics have been seeking a solution to the problem of supersonic

and hypersonic flow past a blunt body that combines the advantages of

minimum computational difficulty with maximum accuracy of results.

Physically, the problem under consideration is the following. A blunt-

nosed configuration is traveling through a uniform gas at a flight Mach

number greater than unity. A detached shock wave forms ahead of the

body at a position depending on the body shape, flight direction and

Mach number, and certain physical properties of the gas. The gas ahead

of the shock wave is unaffected by the preserce of the body. It is

desired to determine the flow properties (e.g., velocity, pressure,

density) in the region between the shock and the body. In general,

this region may be divided into two subregions, depending on the magni-

tude of the local flow Mach number with respect to unity. The locus of

points at which the local flow Mach number is unity is called the sonic

line. If one considers steady flow relative to the body and denotes

by M and MI the free stream and local Mach numbers respectively,

then an example of the above situation is here depicted.

Shock Wave

> 1 Sonic Line (M. 1)

Uniform

t(body)

M> 1

M- >



Mathematically, the problem considered is governed by highly non-

linear differential equations in a domain possessing a free boundary

along which initial values may be determined if the boundary shape and

free stream conditions are known. The governing equations are of

elliptic type in the subsonic region ( M < 1 ) and of hyperbolic type

in the supersonic region ( M2 > I ). The initial-value problem for

hyperbolic equations is well posed and yields to solution using the

well-known theory of characteristics. The initial-value problem for

elliptic equations is, however, poorly posed, and much of the effort

expended on the blunt-body problem has been confined to its solution in

the subsonic region. Attempts have been made to solve the problem by

both inverse and direct methods. In the inverse method, the shape of

the detached shock and the free stream conditions are prescribed, and

the corresponding body shape and flow field are to be determined, In

the direct method, the body shape and free stream conditions are pre-

scribed, and the corresponding shock wave shape and flow field are to

be determined. References [11 and [21 contain detailed reviews of

and extensive references to previous work for plane-symmetric and axi-

symmetric shapes at zero angle of attack, i.e., bodies whose flight

direction is parallel to the body axis of symmetry.

The methods now in popular use for solving the zero-angle problem

in the entire subsonic region to a high degree of accuracy are numerical

in nature and require the use of high-speed electronic computing machines.

Two such methods are Van Dyke's [3] approach to the inverse problem and

Belotserkovskii's [4] solution to the direct problem. Van Dyke's

analysis essentially reduces the solution of the conservation equations

for steady, inviscid flow of a perfect, non-heat-conducting gas to

numerical integration of two coupled partial differential equations for

the density and stream function. Belotserkovskii, on the other hand, by

assuming a polynomial variation between the shock and body for certain

flow quantities, reduces the problem to integration of ordinary differ-

ential equations. Practical experience has shown that both of these

methods require a large amount of skill on the part of the numerical

analyst in order to obtain satisfactory solutions for other than simple
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body shapes such as spheres or circular cylinders. Hence, even though

these methods yield fairly high accuracy, they possess a moderate amount

of computational difficulty.

In contrast to the zero-angle problem, comparatively little effort

has been expended on the problem of the blunt body at angle of attack

in either the two-dimensional or three-dimensional cases. Both Mangler

[5] and Vaglio-Laurin and Ferri [61 suggest computational methods for

attacking such problems, but neither presents results using the analyses

proposed. They both obtain solutions to the zero-angle inverse problem

by introducing the stream function as an independent variable through a

von Mises transformation. The resulting partial differential equations

are then numerically integrated from the shock to the body using a

marching technique. Mangler suggests an extension of this marching

technique to the three-dimensional angle-of-attack problem formulated

in terms of a pair of stream functions. Tke approach of Vaglio-Laurin

and Ferri to the problem of the blunt body at incidence involves a

first-order perturbation of the flow variables about their zero-angle

values.

Vaglio-Laurin [71 has developed another approach to the blunt-body

problem at zero or finite incidence which involves the successive

refinement of an approximate solution by application of the PLK method.

Results for configurations at both zero and finite angle of attack

using the analysis are presented in ref.[71.

The success, however, of Mangler's and Vaglio-Laurin's methods for

the solution of the angle-of-attack problem depends on an assumption

regarding a basic property of asymmetric supersonic flows. The assump-

tion is that the body is covered by the streamline that crosses the

shock at right angles and thus possesses maximum entropy. Mangler has

conjectured that such a condition might be a feature of any flow,

whereas Vaglio-Laurin [7, p.19] purportedly has proven this to be true

for two-dimensional asymmetric configurations. However, the proof has

been found to be faulty, and Vaglio-Laurin is in accord with this con-

clusion (private communication).

-3-
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The analysis that follows yields solutions for two-and three-

dimensional supersonic and hypersonic flow past blunt bodies at small

angles of incidence. The method is an inverse one, that is, thQ shock-

wave shape, free stream conditions, and angle of incidence of the shock

wave are known, and the corresponding body and flow field are to be

obtained. The equations of motion are solved using a semi-analytical,

semi-numerical approach which reduces the problem to numerical integra-

tion of ordinary differential equations. The solution may be carried

to any desired degree of accuracy and requires no extensive numerical

analytical skill. Moreover, no assumption need be ,ade regarding the

behavior of the maximum-entropy streamline. Its position in the flow

is obtained as part of the solution. Results at zero incidence arc

obtained as a special case of the general problem. Although the exam-

ples chosen are for specific shock sha.pes at infinite Mach number and,

in the majority of cases, a specific-heat ratio of 1.4, the analysis

is performed for the general case. The method of extension to higher

angles is obvious and introduces no new difficulties.



II. ANALYSIS

A. Coordinate System

The coordinate system adopted is that developed by Van Dyke [3].

The detached shock wave is described by a conic section so that it is

a portion of a hyperboloid of revolution, paraboloid, prolate ellipsoid,

sphere, or oblate ellipsoid. In cylindrical polar coordinates originat-

ing from its vertex (Fig. 1), any such shock has the equation

r2 2R x - Bx2  (i)

where P is the nose radius of the shock and B is a parameter char-
s

acterizing the eccentricity of the conic section. B is negative for

hyperboloids, zero for paraboloids, positive for ellipsoids, and unity

for a sphere.

An orthogonal coordinate system ( ,T ) that contains the shock

wave as a coordinate surface is defined by

x l [i - (l- B 2 )(1 B + BT2 )  (2a)

s  B

r (2b)

Special cases are

S= (l + 2 2) for the parabola (B = 0) (2c)

x 2

R - - for the circle (B = 1) (2d)
s

The shock wave is described by rj = 1

In this coordinate system, with the azimuthal angle p as the

third orthogonal coordinate, the differential line element ds is given

5-



by

h 2 2 2 2 h2 2
2= h, d2+ h+ dq + > dy0

tdg 2 , +, 2 , 22~q d2>2(5)

1 - B 2  C + Bq2

where C = 1 - B Here v is a geometric parameter, being 0 for

plane and I for axisymmetric or three-dimensional flow.

B. Differential Equations, Initial Conditions, and Method of Solution

Denote by q, n, and p the velocity, density, and pressure non-

dimensionalized with respect to the free stream speed q. , the free

sLtcam density p , and twice the free stream dynamic pressure
2

Sq -, respectively. Then, the equations expressing conservation of

nass, momentun, and entropy for steady inviscid flow or a perfect, non-

heat-conducting gas having constant specif'ic heats are

V.q) ( 4a)

.q .v j a ( tb)

qj.V(/Ip ) 0 (ir)

Wire 7 is tle ad iibat ic Ox florient.

W(, net P = I w~thout loss ,f ge!erality. Eq., (I:i), (QW) and

(14c ) become , in (o' ,(iinaf

L V/ + [

2 + 2%

rr~(p



2 2 2

(5b)

+2 +q2 2 1 +

2 2 2

+ 22
p u (- + + 1- (W + Tj + 2 p

In o c, C + 2 T,(5d)

I2 2E 21B
TC+ V P

p~ +

Hiere u, v .. and w are the components of q in the , qi , and (

dii-cotlon, and subscripts , and yp denote partinl differontin -

tiJun !T tile usuWll

~netemethod '1solutT-on varies slght by between the two-and

tiI 1 ar sIu:~ c s , dc-prirt-.irm "' 1 3 bc tI,,i,. - - -

rent, mnt



1. Plane Flow

Equations (5a) - (5e) apply with V w = The first

(continuity) equation is satisfied by introducing a stream function

defined by

Pu - - v (6)

then the last (entropy) equation simply states that

p Pf( ) (7)

where the functional furm of f is determined by the boundary conditions

't. the shock. Using equation (7) to eliminate the pressure from the

equattun:; of motion yields

I - B _ 2  
- ± 2 -_ B 2 ) (-n)

(6"t)
P B 2s / . 2+ 2 7+I f"

+ 2

P I'Be I - B 2 I

_ 2 + 2 2)

(8b)

B- 2 f "±"____ +~±~ v'"1 Bh + 2  Y+ +f
+ +



Thus far, the attitude of the body with respect to the free stream,

or, since we are considering the inverse problem, the angle of the

uniform free stream with the shock axis of symmetry, has not entered

into the mathematical formulation. The angle of attack of the shock

will, however, appear in the boundary conditions and in the exrplicit

expression for f(*) . These conditions will be derived by employing

McLaurin series expansions about zero angle of attack and retaining

first-order terms in shock angle of attack, E . Setting c equal to

zero recovers the zero-angle conditions.

Moreover, in the angle-of-attack problem, the position in the flow

ahead of the shock wave of the streamline that wets the body is not

known a priori, but must be obtained as part of the solution. A funda-

mental question in the analysis of hypersonic flows past inclined blunt

bodies concerns the behavior of this streamline. It has been conjectured

[5,71 that any isolated convex body in a uniform supersonic stream is

covered by the fluid of maximum entropy in the flow. This means that

the stagnation streamline must have crossed the bow shock where it is

a normal shock wave. To determine the position of the stagnation stream-

line in the free stream and thus possibly disprove the conjecture, the

formulation of the angle-of-attack problem requires the introduction of

an additional parameter, 5 (Fig. 2). The quantity cb is a measure

of' the distance of the body streamline in the free stream from a given

reference line. This reference line is at angle c to the x-axis and,

in gencral, is taken to pass through the point x- .1 r 0

hlowvcr, in the singular case of the parabola ( B 0 ), the refcrence

line is taken thrnugh the focus of the parabola ( X r = 0

R 2

Values of u, v, p, 1 just behind the shock wave ( T = i ) are

foundfrom the oblique shock relations (e.g., ref. [81) in terms of the

nnglc that the tangent to the bow wave makes with the free stream

dLi"ct ien. Expressing this angle in terms of the slope of the bow wave,

cand , using eqs.(,),onl, retaining first order terms in

ren.'s 'n the ii t-a conditins



= (y + 1) N?(I - B c BTL

(y - i)M2 (l. - 1- 2,- 11 B 7 ) + 2(" + Ut2)

(9a)

at n 1

and gives for the function f(4)

2yM2 (1 - B!.A+ 2cB4'5) - (y - 1) + C2 2cC4(BB' +

7(7 + i)~1+ c r 2_ 2E(11 - B+'2
+ J

Jy1M(1-B*f2+ 2cB*4') + 2 A 4-C*v 2cC4' (\, IB + n

where M is the free stream Mach numbcr. For the singular case of a

]iar!'b]ic shock wave ( B 0, C = I ), the expressions for p, 4', 4 n

ind f or I' are

y + Om' 2 ( 2ct)

(y- )M2 (I 2c) + 2(l + 'FP

= ( 5 + 2 1 /2) ; E" 
(  + e) at

(9b)



f = 2YM2 (1 - 2E4,) - (x - I)[i + ,2- 2c',( - - *2/2)]

7(7 + l)M2[l + 42 2e*(6 + -*2/2)]

X - l)M 2 (1- 24*) + 2[1 +' 2 " 2c*(6 + 1- /2)] (lOb)
(Y + 1)M2l - 2Eq,)

The boundary condition at the lody is

= 0 at x b = b (ii)

The method of solution essentially consists of separation of

variables in equations (8) - (11) by expanding the dependent variables

in double McLaurin series about the shock axis of symmetry, t = 0 ,

and about E = 0 . Only first order terms in c are retained. This

leads to ordinary differential equations with corresponding boundarj

conditions for unknown functions of Tj which can be solved only by

truncating the series. The resulting equations are readily integrated

by standard numerical methods. The above procedure will now be carried

out.

Set

4,= too(9) + F0(I) + f2 (1)05 o5(W)

+ E[f 10 (I) + fril()C + f 12()4 0(0)1 ± (E 2 )

- g = ~o(P) + g 1 ()a 2± go 2 () - o( 6 )

+ +g(-) ' go] ( )K5 + 
o(7)i + O (U) 1-

I i2



The first subscript on the functions of i] is 0 for the zero angle of

attack nortion of the solution and 1 for the angle of attack portion,

and the second subscript indicates the position of the term in its

respective series. The forms of these expansions are readily ascertained

by consideration of the initial conditions.

Expansions (12a) and (12b) are substituted into the differential

equations (8) and boundary conditions (9) - (11). Equating coefficients

o powers of and c results in successive prublems for

g0 0' g 0 1 ; '00 ' 600' f 0 1
' goig 0 2 ; etc. Thus the zero-order problem

for f00 and go0 involves two equations which also contain go_ , the

first-order problem for f0 0  g0 0  f0 1 , g0 1  involves four equations

which also contain g02 , and so forth. The same pattern occurs in the

successive equations for the angle-of-attack functions. This "backward

influence" of g 0 n+ in the n th-order problem is due to the ellipticity

of the differential equations in the subsonic region, and i: a mathe-

mtical manifestation of the physical fact that disturbances are propa-

gated in all directions in a subsonic flow. This mathematical behavior

may be contrajsted, for example, with that of the equations determnining

the coefficients of the B.lasius-series solution to the ,)arabolic

('qllOt bIuS governing the laminar boundary layer on n. blunt body. Sub-

stitution of the Blasius series into the governing differential equat-ion

and equating coefficients of like powers results in equations for the

scrie!-. coefficients which involve only one coefficient or depend only

en lower order coefficients, and hence may be solved successively.

th
We return to the problem under consideration. To solve the n

order zero-angle problem for f0 [ 'I " . fOn and g00' g01 "''On

s;ome dctcrm[nation must, be made of g+, , The simpiest thing to do

is Lo truncate the selies by stting gon+ identically rqua] to zrr,.

The( 2 rsuiting equations mny then be integrated.

It is found that the differential equations for f0 and gO© are

:.on~l, i;t I w] to-va th eq':.rti_ . for s ucceedinig te:rno inl .h',. e r-o±e~die

setr'si. are 1_near. The equrt icns for al] the angle of attack 'ue:ion.

are , ".er aned 0'c.ntair. ceCef" itents that depend en the zero-atngIe soAut ion.

- 12



Integration is terminated and the body shape determined by the

boundary condition (i!). For the angle-of-attack problem, this condition

also determines 5 .

To illustrate the procedure, the equations and boundary conditions

for the first and second truncations for a parabolic shock wave at

M = will be presented.

After inserting series (12a) and (12b) into equations (8a), (8b),

(9b), and (10b), and equating coefficients of like powers of and c

the following differential equations and initial conditions are obtained,

(Primes indicate differentiation with respect to q The powers of

and E from whose coefficients the equation results are indicated in

front of each equation).

Differential Equations

a) Zero angle

o f 2
0, 2i,' f 20) _ 0 f0 ' (=0a)

+ 
° ,  22: -go0 "Igo0

g 2
. .. . <f god 00 j_ (y+-)'o f2

00 00 oofoo (oo o + f~ oo ) 712 y-. o o W

, go+1)0 0 2 - - g 2 F
o go0  

t. 00

f0 + i)- foof o go0 + 6foofo0 + 0ffo] 4 f 0 - 2

f--1fl 2 g0, , +

3 , 4. fTO , + 2L g+ f1 r (iSj)
00 o oY 00 J"00 go O0 00 0O

* .5



00011 010 0000~ 3
CE f0f~ 01 3f 01f CO f 80' W~61 + f00g 20 +3 01g900

- f" ' + f 12 1 ( '200 f- 0+fo90 foo 00 02

7 ~1)r2
+ 4 g( 0 ~r) L2 [- 2g2gl 4

±Y-1 20 9 0  2 00 01a0

b) Angle of attack

f00 10  
ti (10  og 0 0 > ) Y-1 00 go

- 00 (r1 0 (f+ -
(16b)

/2 2 y+]-) 2( 1,0  91A~0 , 2

W__ _- _)i - 0f

I TI 900  10 g

2t' f{ + ± h Mt2f (f 4
r~00 00101 4 00 11 fO~l.

gY I)901  - 0

-f fo -2foo' -+ +I
000 0~00 Y- + y* 00 10' 4- for(~04

Enc) grI(,4u)



2~~-- ± f- f f 2 .1+fg) + f' 2' 2f~

00 1 01 0  100 11 0( ) + fo g 0 -0 l' + f1 of

00k O 11

1S (2 fIo
3(1+5f J090 g00

-- O ±'c±1 - '2 (4f 00 f, 1 + 2[2'( 'iof

+o )y1 (15b)

" -L (+) 2 )[ gl I g0 1 g{ 0 -

0 0 0 gc 00 l 00 210

00 (7+i 10] 2f0 01) - (I ) o

-~ ~ ~ ~ -f M- +5+T f (6f,

000 +0M i2go fofc200 2 0 10 )

glo]( gS



90(g 1 1__01___1
+ 2 (7-i) f o(E - f, 0  + (,y:l) + y ~

-2 glO - - g1 0]

(±)00 T-,)+ 2f00( 10 I ~'' 00 12

- 1f f f({ 2o]g +
0001 01 01

-20 6 t±f f + 2f' f +7 6f

02 10 ~ 1
8 012 01 11 01. 011

(4 f + 21fj 0  4(1f 1  +;f ff1{ 2

3~~~0 001 Cf~ 0l2+f~l 01 011

-2 o I~ (f0 f + 317 17 + 2f' f ) 4 -2 - 2 o-
011 001 0i\ 00  0

+ - 00 _L [00t~' +- ',60[i I~~ ± 'h1 i f, D f 10

+ 3(1+6l)f~o + -~(- + j + E y+ L) 00~ o +

>~ ~ ~ ~~6 1r0~ +0 2~~1- -10.~2 (

91.0 mb
4- ll + - I -



Initial Conditions

a) Zero angle

ogooS0 g(1) 1 f (13c)

E2 601(1) = o (15c)

S 03 f 0 1(1) = o ; 8 f6(l) o 0 (16c)

b) Angle of attack

0 E f((1) = -1 (1)+= (13d)
t°  € : io10 =  + 2 i (1) =  --

10 Y-l

E g 10 l(1) = (14a)

11, € (1) 21 - f l(1) = 0 (15d)

E3, E 911 (1) =0 (16d)

The body condition, eq.(il), becomes

f b ( )+ E ffOnb)2+ 0()1 + O(E2) = 0
(17a)

However, b is itself a function of E and depends parametrically on

. Expanding nb (E; E) about its zero angle value yields
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E ) (o) W + E (1) + o(C) (18)

Using eq.(18), the functions of n b in eq. (ia) may be expanded as

follows

f = ~'0 (0) + c ( 1) flo ()

fOl ) = fOl (I b)) + 00 b ) + 0(2)

f f 10 (I(0)) + o(G)

fiO( b ) = flO b

Eq. (ia) then becomes

foo(M)> + fl(°))3 + 0() + f [o(o)) (1) o O)

+ fll( 2 + ()

(b0 (1b

Further expansion of T(O)( ) and about 0 yields

() n + TO ( + U (0)" + 0 (0) (19)

(1)(W (-) + E + (o 2- + O(W) (20)
b 0  2
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where

(0) ( )( )

T(1) ()(0

(0), (0)" (1), ( )
and similar identities hold for the derivatives 0)' ( )" O  

0 O

Then fOOb ) may be expanded as

f(0) f() + ((0) 4 2

(o)'2 2 F (o)) + o( )
+ 2'10 0 0 O

with similar expansions holding for 0l(O6), flO((O)), f'o (0)

f ((0)> , and f oJ 0

Putting these expansions into eq.(17b) yields

(0~ 00)2 + [(0" 00o (O) + 0o)'2 (),f 0(o)

(+)' 0 0 0 o, 0o °)
+ 2fol(40))] 0/32 + O(E 4) + E (f0 ) + [,(0), fi )(0))

ff + 
+( 0 0 0

+ r(o)o+(a) fI1(o), (o '+ l (o- ) < + .(), ( + ) [ (0) 10 f[ (o> 0 IT,0,.<o,0)
_ 1 o o 1 

o
+ ~ I GO11' o0(

-(O ... '2))

J\0-) 2f-OOO + 2 l~ 0j
[(1); , '0 , ,,(( +o () ",., (,,-(o ) (_) 1 fo , ,o (0))0) 0o o0 2 I o fo(0o + To 0 0o
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(0) '2 fo o1 l (0 (0) (0 it lO(O ( 0 o~
( ( 

() )

+ i foj +o f~ + ° (  )  + ° ( C2  0 (17c)

Since this equation must hold for all and E equating coefficients

of like powers of E and c yields

foo - 0 (14e) r

f (0)) - 0 (13e)

(0) (() 0 (21a)

(1) foo(0

00 0 (21b)

0 fo0

(0) (0 + 20i'of o)+o-o (21c)fo0 0 l

) (0)) ( )) 0

I (go ) + fo11(n()) + 0) 0 (21d)

Eq.(14e) is the condition used to terminate the integration in any

truncation and determines (0) the value of r at the nose of the

zero-angle body. Since TIO) is thus determined, eq.(13e) is the

condition that determines 5 , i.e., this condition is satisfied for

only one value of 3 in the initial-condition eq. (13d) and differential

eqs.(13b), (14b), (15b), and (16b).
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Eqs.(21a) - (21e), along with cqs.(18), (19), and (20), determine
(a)

the body shape. Eq.(21a) yields j = 0 . This indicates that the

zero-angle body is represented by an even series in powers of . The

same conclusion could have been reached from symmetry considerations.

Eq.(21b) yields n = 0 , i.e., there is no perturbation to the zero-

angle body at its nose to this order of analysis. Eqs.(21c) and (21d)

(0)" ( Idetermine i 0 ' ro , in terms of the values of the functions of

and their derivatives evaluated at n .o) Eq.(21e) yields

no = 0 , which indicates that the angle-of-attack perturbation to

the body is represented by an odd series in powers of E .

Thus, it is seen that the condition 4r(qb) = 0 determines not

only the body shape, but also the unknown quantity 6 .

Eqs.(13a) - (13e), and (1ha) - (14e) comprise the first-truncation

problem. Eqs.(13a), (14a), (13c), (14c), and (1he) define the zero-

angle problem, whereas eqs.(13b), (lhb), (13d), (14d), and (13e) define

the angle of attack problem. Note that the zero-angle differential

equations (13a) and (l4a) are nonlinear and that eq.(1ha) contains el,

as previously mentioned. Setting g 0 1  equal to zero allows the zero-

angle problem to be solved. Setting f 0 1 , f1 1 1 and g0 1 equal to

zero in eqs.(13b) and (14b), and utilizing the zero-angle results,

initial condition oqs.(13d) and (14d), and body-condition eq.(13e)

allows solution of' the first-truncation equations for the angle-of-

attack problem.

Similar remarks apply to the second-truncation problem defined by

eqs.(13a) - (13e), (14a) - (1he), (15a) - (15e), and (16 a) - (16e), with

functions having a second subscript of 1 being retained and those

having a second subscript of 2 being set equal to zero. Hip{her-order

problems are solved in like manner.

2. Three-Dimensional Flow

In contrast to the case of plane flow, the continuity equation is

satisfied by -he introduction of a pair of stream functions, W and

_ according tc
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Pq = V 1 X V> 2  (22)

The use of such a pair of functions in this manner was introduced by

Clebsch [9].

The entropy-conservation equation, (5e), then states that

P =g(*l'*2) (23)
7

where the functional form of g is to be determined from the boundary

conditions at the shock wave.

Using equations (22) and (23) in equations (5b), (5c), and (5d)

yields the following equations for *1'*2 , and p :

+6 ha, h 3th

- Pl'2" '%P4 2) V 1- 2 i3)] + (*t It" 2 'p2 )

× [*1l*2 2+  2 lp2Pj _Vl2 T2 j 2 TI * ( 2p-  4p * 2T )

2 + (2- ' a2
) [ 1T9 2+ +1q 31p2r

h 2rp +l~ ("I + 2r1 (t * 2 - 1 2

2 3h



+h 2 h 2 ~(+) + Ii*'1, " g(* 1 ,)* 0 (24a)

N,~T +

-lr.'20 ll '2/ - ('1'2q 'I'l4;q''2 t '42('1' '2 t ~Wo2-

h 3 ~ 4'< 2& ±

2+ T ~'.~2T 2hp 1(+1 2 j V*C -' d + F 1 2~ h 2h vK4]2(p '1(2

(24b)

Tj *42 p v ]-4i 2 T11 I [~i~ 2  yI± *~2 - *4'1j*2 - *1 1*2P- 2'~ r, - , j

-(~~ 2,~ 1 v2 ) 4.+ + _ 2-

- 23-



Ii 2T In] 12p 1hi1 1 _P2 1*,
+ ( l 2 - "l]-,'2 ) U[ ( ~ ' ¢1ty2, ) + 1" (q'm'2 " '

h2 h (2 (+l) r + Y g( )1) 0 (24c)
+ 1 2 1rl''l g2 2 yo Pg 2

Before the initial conditions are presented, a few words are in

order regarding the stream functions I and 42 These functions

possess a degree of arbitrariness in that it is only required that the

surfaces * (1,,) = constant and *2 (,,<o) - constant be stream

surfaces, that is, surfaces in which streamlines are imbedded. The

intersections of these surfaces are then streamlines. If one considers

a uniform stream for simplicity, there are any number of pairs of

surfaces which can be set up to satisfy this requirement. For example,

one such pair consists of orthogonal or skewed planes. Another is

concentric circular cylinders and orthogonal planes through the common

axis of the cylinders. If, however, one considers nxisymmetric flow in

a ( coordinate system and chooses for * 2 the azimuthal an;ilar

coordinate p , * is the familiar Stokes stream function. Ilecce,

since we are considering small anfgle of attack, it is reasonable to

perturb *2  about (p and iV about the Stokes function.

Consider Fig.2. Depicted there Ls a shock wave that is a paraboloid

of revolution at anle ( to the uniform free stream. A line at arinle

c through a known point on the x-axis (e.g., central point of a hyper-

boloid, focus of a paraboloid, center of a sphere, point of intersection

Lf major and minor axes of an ellipsoid) is chosen as reference from

which the distance to the body streamline ahead of the shock is measured.

Concentric circular cylinders about. 4i = 0 and planes of angle

= constant are chusen for the stream surfaces ahead of the shock

(see section A-A, Fig.2). With $i and V2 defined in this manner,

the initial conditions are
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p _- (y + 1)M2 (1 - B 2 2c r - B os 0) (25a)

(y - )M2 ( - Bt 2 - 2c 1 - BeCos p)+ 2(1 + cF2 )

=' 2/2 + cos qi ( 1 (Sb

--si B2+1 (25c)

+ 1- COS Lp =B O 21+ ~ 2d

E sin o Vr B T+(5

2 2B

VI' -B

- (i + c 2)] (25e)

at ,] .

and the function g( , 1 y 2 ) is
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) = (2M 1 - B 2*- 2 V cos *2/ - B + j

-2 V T i C Cos * 2 % - 2Bj

- (Y-l) 1 + (1-B) 24l1 2 V 27 E COS I2 B +

V(y+)1M21 + (i-P) 24 -2 2- Cos *2( D

+ 2(1 + (i-B) 2 1 - 2 E cos If2 1 B-2B* +(Y±1)M2[~B[211rl 2 V -2- Cc o s 2 If~~ 2 VT)1-2 ~ cb'~1'?]211,

I (2(;a)

For the special case of a paraboloidal shock (B 0, C = 1) the shift

in reference line previously mentioned on pae 9 results in

( ',)N?(i - 2E cos p)(2f

(y- 1).1 - 2I cos ,p) + 2(1 + )

11i =2/2 + c, cos + (25)
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c sin (3{ + k2 / 2 2)( 5h2 =  (P2 1 2 h

II= P C os @(P 3+ 5 - E2/2)] (25i)

ep sin 2 - 1 _ .2,-%
"2 fd)

g(*,42) = (/M2(l - 2 v cos V -2
)  (v-I) [i + 2* I

- 2 '2Ti cos 2 (5 + -

(v+i)N2[ 1 + 2*1-2 V2v1 E cos 2  + - w1]

V

S(+1 (1 - 2V/ w7  C cos b2)
-.(26b)

The boundary condition at the body is

1= 0 at r = 
1  (2'()

The method of solution is essentially the same as for plane flow.

Separate variables by setting

2 o0' '  + 4 , 6
2 fI + o( ,

C cos y [o n) + f1 i(0)0
3 + f 1 2 () o± + o( (2,3)
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= + E sin @hp + hil(TI)E + h 5) + O(C
2 )

(28b)

Y+i + g0!
(n ) 2 + go (TA 4+ (6

g+ 1 00 (TO +gol 02()+ ()
cos [glo(n) + gll(n) 3+ gl 2 (r) 5 ] + 0( 2 ) (28c)

Again, after one substitutes these expansions into eqs.(2 4 ) - (27) and

equates coefficients of like powers of' and E , the series must be

truncated to obtain a solution. As in the plane-flow case, the equations

for f00  and go0  are nonlinear and succeeding equations for the other

unknown functions of rj are linear, with the equations for the angie-of-

attack functions having variable coefficients depending on the zero-

angle solution. The body boundary condition, eq.(27), is applied in a

similar manner as outlined for plane flow with the modification that the

body shape is now given by

(0) ) + c ( ) (lb)

3. Sonic Iiles and Surface Pressure Distributions

In addition to body shapes, sonic lines and surface pressure dis-

tributions out to the sonic line were calculated to investigate conver-

gence of the series expansions away from the axis. The mathematical

details of obtaininr these quantities will now be presented.

The energy-conservation equation for a perfect. gas,

-2 -

Y-l 2 , ' (29)w-1 2 yi 2

whore barred quantities repi-esent dimenslona! physical quantities,
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becomes, after suitable nondimensionalization

2 [2 + (-Y " )M2P i1 (O

M2 [2 (7)M P (30)

where . is the local LM-ch number of the flow in the shock layer. On

the sonic line, the local Mach number is unity. Furthermore, the mass-

and entropy-conservation equations yield p p f(*) (plane flow), and

p = oY g(*il,2 )  (three-dimensional flow). Putting this information

into eq.(30) yields

2 + (y - 1)M2  p(l--) + 1 (v O) (31a)

2Y M', 2 ( m

2 M2  (l ' + I (v 1)

1' 2

Introduction of f or g in terms of the series expansions for 4, ],

and *2 yields equations which, for a given truncation, are algebraic

expressions for E in terms oF functions of 9 . election of values

of ?i between the shock and body allows corresponding values of to

be calculated, thus determining points on the sonic line.

The equations for surface pressure distributions are obtained by

utilizing

p P p f(V) (v=O) (7)

p= y ',,2) v ) (23)

Again, substitutinp appropriate expansions f'r p, f , and r yields

p( ,D; c) Use of known pairs of values of [ and i on the body

allows the pressure 'o be caculned in any Friven truncation.
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III. RESULTS AND DISCUSSION

A. Zero Angle of Attack

To examine the convergence of the series expansions for the stream

functions and density, zero-angle-of-attack resutLs will be presented

initially. From consideration of the simplifications brought about

in the equations and boundary conditions, the free stream Mach number

is taken to be infinite and the shock shape to be a portion of a circle,

parabola, sphere and paraboloid of revolution. The specific heat ratio,

Y , is taken to be 1.4.

The first four truncations have been carried out for the circulgr

Pnd paraboloidal shock, while the first three truncations have been cal-

culated for the spherical and parabolic shock waves. The numericnl

integration of the ordinary differential equations for the unknown

functions of I was accomplished using a fourth-order Runge-Kutta-Gill

method [10]. The computations were carried out on an IBM 7090 electronic

computing machine at Lockheed Missiles and Space Company, Sunnyvale,

California. Machine times of two to three minutes were required for

each case.

Results on and away from the axis are compared with numerical

solutions obtained using the inverse method developed by Van Dyke [1]

and refined by Fuller [11]. Convergence on the axis is extremely rapid,

three truncations giving the stagnation-point density correct to five

significant figures and the standoff distance to four significant figures

as determined by comparison of the parabolic shock solution with

Garabedian's results [12]. Convergence off the axis is somewhat less

rapid, as is to be expected from the form of the expansions. The term

convergence is used here in the sense that, whenever two successive

truncations yield values for a physical quantity identical in three or

more significant figures, it is said that the quantity has converged.

Nothing can be said about convergence of the assumed series in the strict

aathematical sense, since the functional form of the series coefficients

is not explicitly known.

- 30 -



1. Plane Flow

Results for the circular and parabolic shock waves are given in

Figures 3 - 6 and 11. Figures 3 - 5 apply to the circular shock. In

Figure 3, the convergence of the reduced stream function 4/c , and

the density function, ("-l)p/(Y+l) , along the axis ( = 0 ) is
examined and results of one, two, three, and four truncations compared

with numerical solutions. As previously mentioned, convergence is

extremely rapid for both the density and stream function, the differ-

ences between the second, third and fourth truncations being indiscern-

ible to the scale of the plot. The standoff distance referred to the

shock nose radius, A/Rs , is determined to be 0.1895 by the second

truncation and 0.1899 by the third and fourth truncations. This con-

verged result is smaller than the value of 0.1912 determined by NASA

case MDPF*, and larger than the value of 0.1880 determined by NASA case

34 (these values for standoff distance are obtained using that value

of q at which fOG' goes to zero, along with eq. (2d)). The method

of solution for NASA case IDF contains a smoothing process [11] whereas

that for case 34 does riot., As pointed out in ref. [l], the smoothing

process has the effect of increasing standoff distance. Comparison of

the two NASA results with the converged value leads to the conclusion

that the NASA data are not sufficiently accurate to be used as an

absolute basis of comparison. This point will be further borne ou, as

other physical quantities are considered.

Figure 4 compares sonic lines and body shapes as determined from

the second, third, and fourth truncations with the results of NASA case

MDF. The sonic line determined by the first truncation is a circle

having a radius of 1.593 and center at x = 1, r = , while the first,

trurication body determined by the numerical integration is the point

x = 1, r = 0 . Note that the first-truncation sonic line lies ahead

of the shock. This result is obtained by analytic continuation of the

solution upstream of the shock wave and is, of course, physically

N.A$A results for cases !CF, 1MDD, RSi and Rs4 courtesy of Ames
Aeronnutical Laboratory (unpublished)

- 31 -



unrealizable since the flow ahead of the shock is uniform at infinite

Mach number. Comparison of the body shapes determined by the third nnd

fourth truncations indicates convergence beyond the sonic point to a

shape other than the NASA result. The sonic line, however, has not

converged and higher truncations would be required to determine its

exact location.

Figure 5 compares the surface pressure distribution determined by

the second, third, and fourth truncations with the NASA results. Con-

vergence has been obtained for about two-thirds of the distance to the

sonic point. The converged portion of the curve and the NASA results

are parallel, but do not coincide due to the discrepancy in body position.

Higher truncations are required to obtain convergence all the way to the

sonic point, but the trend indicates that the converged values will

probably not parallel the NASA data for the entire distance.

Figures 6 and 11 apply to a parabolic shock. The results of one,

two, and three truncations for the reduced stream function and density

function alcng the axis are compared with both NASA results and

Garabedian's solution [12] in Figure 6. Results for the circuTar shock

have indicated that the NASA data lack sufficient accuracy to be used

ao an absolute basis for comparison and that the method under consider-

ation possesses internal consistency. The question of convergence to

the correct solution may be answered by comparison with Garabedian's

result for a parabolic shock at infinite free stream Mach number.

Garabedian claims 1/10 of one percent accuracy for his ,tandoff distance

o 0. L81(. The third truncation yields a standoff distance of o.13 5 h,

thus indicating at least three and perhaps four significant figure

accuracy 'or this quantity.

Figure 11 compares body shape and sonic lines as determined by

one, two, and three truncations with NASA results. For this case, corm-

paricorn indicates near convergence o)f the third truncation for both

quantities.
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2. Axisymmetric Flow

Results for spherical and paraboloidal shock waves are given in

Figures 7 - 10. Figure 7 depicts the variation of the reduced stream

func-ion, 2'/ 2 , and density function along the axis of symmetry

between a spherical shock and the body. Again, the convergence is

extremely rapid, three truncations giving a standoff distance, n/Rs

of 0.0998 compared with the NASA results of 0.0981 (unsmoothed) and

0.0993 (smoothed).

Figures 8 - 10 apply to a paraboloidal shock wave. Figure 8 yields

a standoff distance of 0.8956 as determined by the second, third, and

fourth truncations. Hence, the standoff distance converges to four

significant figures in only two truncations for this case.

Figure 9 compares body shapes and sonic lines with a NASA numerical

solution. In the first truncation, both body and sonic lines are

q = constant lines, the body being at i = 0.8552 and the sonic line

at I - 1,0780. The corresponding values of x and r may be obtained

from eqs.(2b) and (2c). Again, the first-truncation sonic line lies

ahead of the shock, this result having been obtained by analytic con-

tinuation of the solution upstream of the shock wave. Since the sonic

point on the body has a coordinate greater than in the case of the

circular shock, neither the body shape nor the sonic line appears con-

verged even in four truncations for this case. However, consider the

surface pressure distribution given in Figure 10. Onc-dimensionai

streamtube relations yield the result that, for / = 1.4 , the pressure

at the sonic point on the body must have the value 0.486. This value in

plotted at the value of x determined by the intersection of the fourth-

truncation body and sonic line from Figure 9 (asterisk symbol, Figure

10). One sees that this point nearly coincides with the pressure curve

obtained by applying a Shank's transformation [13] to the fourth-

truncaticn pressure series. The nonlinear Shank's transformation

causes the slowly convergent pressure series to converge more rapidly.

The above agreement indicates near convergence without, the necessity

.f c :ilculating the fifth truncation.
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B. Small Angle of Attack

The analysis outlined for the angle-of-attack problem has been

carried out for shock waves that are parabolas (plane flow) and parab-

oloids of revolution (three-dimensional flow). The first three trun-

cations have been calculated for each shock shape. The free stream Mach

number is taken to be infinite, and y takes on the vclues 1.4, .1.2,

.l, 1.05. The resulting body shapes, sonic lines, and positions of the

body streamlines at their points of intersection with the shock wave are

shown in Figures 12 and 13 for E = 100, y = 1.4, where a finite value

of c has been selected for graphical purposes and the error is 
O(C2

For purpose of comparison, body shapes and sonic lines for a parabolic

and paraboloidal shock at zero angle are given in Figures i and 9

respectively. Computing machine times of five to six minutes per case

were required since the zero-angle functions appear as coefficients in

the angle-of-attack equations and hence musL be stored in the machine.

Also, in certain cases it was necessary to use very small step sizes

(e.g., Arj = 10-4 ) in order to obtain accurate values for the quantity

Of particular interest in the angle-of-attack problem is whether

or not the streamline that wets the body crosses the shock normally,

thus having maximum entropy. For this to be so, the quantity F (se

Figure 2) must have the value 2 . The results of the analyses are

given in 'Pablo I.

TABLE I

Values of 5

Parabolic Shock, M Paraboloidal Shock, M

Truncation 1.4 1.2 1.1 1.05 1.4 1.2 1.1. 1.05

] 1518 8417 - - 88.00 37.48 25.79 -1.3:4

2 .4838 .4935 .4V1,4 .4990 .5576 .5394 .5190 .5042

5 47 8  .4eco3 . 49k, .14988 .4871 .4950 .4984 .5004
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For all cases the trend of decreasing 5 with increasing trunca-

tion is toward a value of 5 slightly less than I For the three-

dimensional case, a reversal of this trend in higher truncations could

conceivably result in a value of 1 . However, even if this reversal

took place in two dimensions, a converged value would be expected to

lie between the second-and third-truncation values and thus could never

1be i . Hence, the streamline that wets the body passes through the

shock wave slightly above the point where it is a normal shock. However,

as the Newtonian limit process ( M -Y , y -. 1 ) is carried out, the

trend is toward a value of 1 . Hence in this limit, when the parabolic

and paraboloidal shock and body coincide, the body is covered by the

maximum-entropy streamline in both the plane and three-dimensional cases.

Since the shock waves possess symmetry about the x--axis, the

resulting body shapes are asymmetric to this axis. Consideration of

the comparison In Figure 11 of the third-truncation body for the para-

bolic shock at zero angle with the NASA results, and of the results for

the circular shock given in Figure 4, lead to the conclusion that, for

symmetr'ic plane flow at M -v , three truncations yield a nearly con-

verged body out to the sonic point. Since C is taken as small, it

is reasonable to extend this conclusion to include small angles of

incidence. With the above facts in mind, and the realization that it.

is somewhat impractical to talk about asymmetric shapes from an experi-

mental or engineering viewpoint, an attempt was made to find an axis

system in which that portion of the two-dimensional body g1iven by the

third-truncation (Figure L2) out to the sonic points could be closely

approximatcd by a conic section. An ellipse was fitted by a trial-and-

error procedure in which the positions of the foci and major axis were

varied until points on the ellipse and third truncation body coincided

to three significant figures (Firure l). The ellipse is riven by the
equt ion x/0.37 + r 2 /C.20 I 1 , where the oriiin of the ( , r ) axes

is at x = .'-90, r - .033 , and the x axis is at antyle 14.20°

measured clockwise from the free stream direction. Thus, the shock

wave is seen to rotate about "0 per cent as fast as the body as t.e

ango1e of attack is imposed.
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No attempt was made to perform a corresponding fit to the three-

dimensional body determined by the third truncation, since Figure 9

indicates that the body shape out to the sonic point has not converged.

Note, however, that the third-truncation body is closer to the shock in

the p = v plane than in the q = 0 plane. Hence, to this truncation,

the shock wave still must rotate more slowly than the body as angle of

attack is imposed.



IV. CONCLUSIONS

A semi-analytical, semi-numerical method of analysis has been

developed and successfully applied to the problem of two-and three-

dimensional hypersonic flow past blunt bodies at small angles of

attack.

Solutions at zero angle of attack are obtained as a special case

of the general problem. Standoff distances are predicted to higher

accuracy than by any other existing method.

For a shock wave that is a parabola or paraboloid of revolution

at anrle of incidence to a uniform free stream having infinite Mach

number and y = 1.4 , the streamline that wets the body passes through

the shock wave slightly above the point where it is a normal shock wave.

Hence, the body is not covered by the maximum-entropy streamline in

these cases. In the Newtonian limit ( M = - , y = 1 ), the parabolic

or paraboloidal body is wetted by the maximum-entropy streamline. For

a parabolic shock at infinite Mach number, 7 = 1.4 , the shock wave

rotates more slowly than the body as angle of attack is imposed.



V. FUTURE RESEARCH

Although the analysis presented here is for general Mach number

and shock shape, results have been obtained only for certain shock

shapes at infinite Mach number. Work is currently in progress to

progrram the general problem for the IBM 7090 computer.

Since the results of these calculations in the vicinity of the

sonic line might serve as input data to a characteristic program for

the solution of the flow field downstream of the sonic line, possible

means of improving the.convergence of the method in the vicinity of the

sonic line are being explored.

One such possibility involves expanding the stream functions and

density in Taylor series about an arbitrary = constant line in the

flow. By choosing, this arbitrary line close to the sonic line, one

might expect more rapid convergence for values in this region at a

sacrifice of convergence in the vicinity of the shock axis of symmetry.

Another possible means of improving convergence away from the

shock axis of symmetry is by applying power series expansions to quan-

tities which vary ,,lowly as one moves away from the shock symmetry axis,

thereby reducing the magnitude of the coefficients of the higher order

terms with respect to those of lower order. For example, at infinite

,M&ach number, p is constant behind the shock, whereas p/p) is

constant on the body. If one considers expanding the product P M P

then m 1 corresponds to expanding p , whereas m - /y-i corresponds

to expanding p/ 7 
. One might consider expanding, for a value of m

which is the averaige of 1 and Y/Y-l . This would then correspond to

a quantity which varies more slowly as one moves away from the shock

axis of symmetry than either p/p on the sleck or p on the body.

k f';rther possible extension of the work is to render it applicable

to hypersonic flow of real gases in eq'iilibrium and perfect gases in

tJ.t.erzrvi. and chemical nonequilibrium.
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Fig. 1 Representation of Shock Wave
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